Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization
نویسندگان
چکیده
منابع مشابه
Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization
MOTIVATION Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-re...
متن کاملLearning Phenotype Specific Gene Network by Knowledge Driven Matrix Factorization
A popular method for reconstructing gene networks from micro-array data is Bayesian structure learning. However, most Bayesian structure learning algorithms suffer from three major shortcomings, i.e., the high computational cost, inefficiency in exploring qualitative knowledge, and inability of reconstructing phenotype specific gene network. We address these three short-comings by presenting a ...
متن کاملUsing Knowledge Driven Matrix Factorization to Reconstruct Modular Gene Regulatory Network
Reconstructing gene networks frommicro-array data can provide information on the mechanisms that govern cellular processes. Numerous studies have been devoted to addressing this problem. A popular method is to view the gene network as a Bayesian inference network, and to apply structure learning methods to determine the topology of the gene network. There are, however, several shortcomings with...
متن کاملStability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staN...
متن کاملKnowledge-based gene expression classification via matrix factorization
MOTIVATION Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2009
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btp376